Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540737

RESUMO

Bone morphogenetic protein (BMP) and platelet-derived growth factor (PDGF) are known to regulate/stimulate osteogenesis, playing vital roles in bone homeostasis, rendering them strong candidates for osteoporosis treatment. We evaluated the effects of recombinant human BMP-7 (rhBMP7) and PDGF-BB (rhPDGF-BB) in an oophorectomy-induced osteoporosis rat model. Forty Sprague Dawley rats underwent oophorectomy surgery; treatments commenced on the 100th day post-surgery when all animals exhibited signs of osteoporosis. These peptide growth factors were administered intraocularly (iv) once or twice a week and the animals were monitored for a total of five weeks. Two weeks after the conclusion of the treatments, the animals were euthanized and tissues were collected for assessment of alkaline phosphatase, X-ray, micro-CT, and histology. The results indicate that the most promising treatments were 20 µg/kg rhPDGF-BB + 30 µg/kg rhBMP-7 twice a week and 30 µg/kg BMP-7 twice a week, showing significant increases of 15% (p < 0.05) and 13% (p < 0.05) in bone volume fraction and 21% (p < 0.05) and 23% (p < 0.05) in trabecular number, respectively. In conclusion, rhPDGF-BB and rhBMP-7 have demonstrated the ability to increase bone volume and density in this osteoporotic animal model, establishing them as potential candidates for osteoporosis treatment.


Assuntos
Proteína Morfogenética Óssea 7 , Osteoporose , Humanos , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Morfogenéticas Ósseas , Osteoporose/tratamento farmacológico , Proteína Morfogenética Óssea 2
2.
Dev Growth Differ ; 66(3): 182-193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342985

RESUMO

Newts can regenerate functional elbow joints after amputation at the joint level. Previous studies have suggested the potential contribution of cells from residual tendon tissues to joint cartilage regeneration. A serum-free tissue culture system for tendons was established to explore cell dynamics during joint regeneration. Culturing isolated tendons in this system, stimulated by regeneration-related factors, such as fibroblast growth factor (FGF) and platelet-derived growth factor, led to robust cell migration and proliferation. Moreover, cells proliferating in an FGF-rich environment differentiated into Sox9-positive chondrocytes upon BMP7 introduction. These findings suggest that FGF-stimulated cells from tendons may aid in joint cartilage regeneration during functional elbow joint regeneration in newts.


Assuntos
Proteína Morfogenética Óssea 7 , Condrócitos , Fatores de Crescimento de Fibroblastos , Animais , Diferenciação Celular , Condrócitos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Salamandridae/metabolismo , Tendões/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia
3.
Biol Pharm Bull ; 46(10): 1421-1426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779043

RESUMO

Despite the fact that liver fibrosis is an intractable disease with a poor prognosis, effective therapeutic agents are not available. In this study, we focused on bone morphogenetic factor 7 (BMP7) that inhibits transforming growth factor (TGF)-ß signaling, which is involved in liver fibrosis. We prepared an albumin-fused BMP7 (HSA-BMP7) that is retained in the blood and evaluated its inhibitory effect on liver fibrosis. Bile duct ligated mice were used as an acute liver fibrosis model, and carbon tetrachloride-induced liver fibrosis mice were used as a chronic model. All mice were administered HSA-BMP7 once per week. In the mice with bile duct ligation, the administration of HSA-BMP7 significantly suppressed the infiltration of inflammatory cells, the area of fibrosis around the bile duct, and decreased in the level of hydroxyproline as compared with saline administration. The mRNA expression of TGF-ß and its downstream fibrosis-associated genes (α-SMA and Col1a2) were also suppressed by the administration of HSA-BMP7. In the carbon tetrachloride-induced liver fibrosis mice, the HSA-BMP7 administration significantly decreased the hepatic fibrosis area and the level of hydroxyproline. Based on these results, it appears that HSA-BMP7 has the potential for serving as a therapeutic agent for the treatment of liver fibrosis.


Assuntos
Proteína Morfogenética Óssea 7 , Cirrose Hepática , Animais , Camundongos , Albuminas , Tetracloreto de Carbono , Hidroxiprolina/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta1/metabolismo , Proteína Morfogenética Óssea 7/farmacologia
4.
Acta Biomater ; 170: 360-375, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611691

RESUMO

The clinical application of growth factors such as recombinant human bone morphogenetic protein-2 (rh-BMP-2), for functional bone regeneration remains challenging due to limited in vivo efficacy and adverse effects of previous modalities. To overcome the instability and short half-life of rh-BMP-2 in vivo, we developed a novel osteogenic supplement by fusing a protein transduction domain (PTD) with BMP-2, effectively creating a prodrug of BMP-2. In this study, we first created an improved PTD-BMP-2 formulation using lipid nanoparticle (LNP) micellization, resulting in downsizing from micrometer to nanometer scale and achieving a more even distribution. The micellized PTD-BMP-2 (mPTD-BMP-2) demonstrated improved distribution and aggregation profiles. As a prodrug of BMP-2, mPTD-BMP-2 successfully activated Smad1/5/8 and induced mineralization with osteogenic gene induction in vitro. In vivo pharmacokinetic analysis revealed that mPTD-BMP-2 had a much more stable pharmacokinetic profile than rh-BMP-2, with a 7.5-fold longer half-life. The in vivo BMP-responsive element (BRE) reporter system was also successfully activated by mPTD-BMP-2. In the in vivo rat tibia distraction osteogenesis (DO) model, micro-computed tomography (micro-CT) scan findings indicated that mPTD-BMP-2 significantly increased bone volume, bone surface, axis moment of inertia (MOI), and polar MOI. Furthermore, it increased the expression of osteogenesis-related genes, and induced bone maturation histologically. Based on these findings, mPTD-BMP-2 could be a promising candidate for the next-generation osteogenesis drug to promote new bone formation in DO surgery. STATEMENT OF SIGNIFICANCE: This study introduces micellized bone morphogenetic protein-2 (mPTD-BMP-2), a next-generation osteogenic supplement that combines protein transduction domain (PTD) and nano-sized micelle formulation technique to improve transduction efficiency and stability. The use of PTD represents a novel approach, and our results demonstrate the superiority of mPTD-BMP-2 over rh-BMP-2 in terms of in vivo pharmacokinetic profile and osteogenic potential, particularly in a rat tibial model of distraction osteogenesis. These findings have significant scientific impact and potential clinical applications in the treatment of bone defects that require distraction osteogenesis. By advancing the field of osteogenic supplements, our study has the potential to contribute to the development of more effective treatments for musculoskeletal disorders.


Assuntos
Osteogênese por Distração , Pró-Fármacos , Ratos , Humanos , Animais , Tíbia/metabolismo , Osteogênese por Distração/métodos , Pró-Fármacos/farmacologia , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas , Proteína Morfogenética Óssea 2/farmacologia , Osteogênese , Proteína Morfogenética Óssea 7/farmacologia
5.
Auton Neurosci ; 247: 103085, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031474

RESUMO

Autonomic dysfunction has been observed in Alzheimer's disease (AD); however, the effects of genes involved in AD on the peripheral nervous system are not well understood. Previous studies have shown that presenilin-1 (PSEN1), the catalytic subunit of the gamma secretase (γ-secretase) complex, mutations in which are associated with familial AD function, regulates dendritic growth in hippocampal neurons. In this study, we examined whether the γ-secretase pathway also influences dendritic growth in primary sympathetic neurons. Using immunoblotting and immunocytochemistry, molecules of the γ-secretase complex, PSEN1, PSEN2, PEN2, nicastrin and APH1a, were detected in sympathetic neurons dissociated from embryonic (E20/21) rat sympathetic ganglia. Addition of bone morphogenetic protein-7 (BMP-7), which induces dendrites in these neurons, did not alter expression or localization of γ-secretase complex proteins. BMP-7-induced dendritic growth was inhibited by siRNA knockdown of PSEN1 and by three γ-secretase inhibitors, γ-secretase inhibitor IX (DAPT), LY-411575 and BMS-299897. These effects were specific to dendrites and concentration-dependent and did not alter early downstream pathways of BMP signaling. In summary, our results indicate that γ-secretase activity enhances BMP-7 induced dendritic growth in sympathetic neurons. These findings provide insight into the normal cellular role of the γ-secretase complex in sympathetic neurons.


Assuntos
Secretases da Proteína Precursora do Amiloide , Proteína Morfogenética Óssea 7 , Ratos , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Dendritos/metabolismo , Células Cultivadas , Neurônios/metabolismo
6.
Invest Ophthalmol Vis Sci ; 64(4): 12, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37043340

RESUMO

Purpose: The proliferation, migration, and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) are believed to be the pathological mechanisms underlying anterior subcapsular cataract (ASC). Bone morphogenetic proteins (BMPs) inhibit transforming growth factor-beta (TGF-ß)-induced fibrosis in the lens. Herein, we aimed to further clarify the roles of BMP-4/BMP-7 in the progression and the underlying mechanisms of fibrotic cataract. Methods: BMP-4/BMP-7, TGF-ß2, jagged-1 peptide, or DAPT were applied in a mouse injury-induced ASC model and in the human LEC cell line SRA01/04. The volume of opacity was examined by a slit lamp and determined by lens anterior capsule whole-mount immunofluorescence. Global gene expression changes were assessed by RNA sequencing, and the levels of individual mRNAs were validated by real-time PCR. Protein expression was determined by the Simple Western sample dilution buffer. Cell proliferation was examined by CCK8 and EdU assays, and cell migration was measured by Transwell and wound healing assays. Results: Anterior chamber injection of BMP-4/BMP-7 significantly suppressed subcapsular opacification formation. RNA sequencing of the mouse ASC model identified the Notch pathway as a potential mechanism involved in BMP-mediated inhibition of ASC. Consistently, BMP-4/BMP-7 selectively suppressed Notch1 and Notch3 and their downstream genes, including Hes and Hey. BMP-4/BMP-7 or DAPT suppressed cell proliferation by inducing G1 cell cycle arrest. BMP-4/BMP-7 also inhibited TGF-ß2-induced cell migration and EMT by modulating the Notch pathway. Conclusions: BMP-4/BMP-7 attenuated ASC by inhibiting proliferation, migration, and EMT of LECs via modulation of the Notch pathway, thereby providing a new avenue for ASC treatment.


Assuntos
Opacificação da Cápsula , Catarata , Cristalino , Camundongos , Animais , Humanos , Fator de Crescimento Transformador beta2/farmacologia , Transição Epitelial-Mesenquimal , Proteína Morfogenética Óssea 7/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Catarata/metabolismo , Cristalino/metabolismo , Transdução de Sinais , Proliferação de Células , Movimento Celular , Células Epiteliais/metabolismo , Opacificação da Cápsula/patologia
7.
Neurochem Res ; 48(9): 2687-2700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37071344

RESUMO

Excessive activation of pro-inflammatory (M1) microglia phenotypes after spinal cord injury (SCI) disrupts tissue repair and increases the risk of secondary SCI. We previously reported that adeno-associated virus (AAV) mediated delivery of bone morphogenetic protein 7 (BMP7) promotes functional recovery after SCI by reducing oligodendrocyte loss and demyelination; however, little is known about the early effects of BMP7 in ameliorating neuroinflammation in the acute SCI phase. Herein, we demonstrate that treatment with recombinant human BMP7 (rhBMP7) suppresses the viability of LPS-induced HMC3 microglia cells and increases the proportion with the M2 phenotype. Consistently, in a rat SCI model, rhBMP7 decreases the activation of microglia and promotes M2 polarization. After rhBMP7 administration, the STAT3 signaling pathway was activated in LPS-induced HMC3 cells and microglia in spinal cord lesions. Furthermore, the levels of TNF-α and IL-1ß were significantly decreased in cell culture supernatants, lesion sites of injured spinal cords, and cerebrospinal fluid circulation after rhBMP7 administration, thus reducing neuron loss in the injured spinal cord and promoting functional recovery after SCI. These results provide insight into the immediate early mechanisms by which BMP7 may ameliorate the inflammation response to secondary SCI.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Ratos , Animais , Microglia/metabolismo , Doenças Neuroinflamatórias , Inflamação/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Lipopolissacarídeos/toxicidade , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Turk J Med Sci ; 53(1): 10-18, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36945919

RESUMO

BACKGROUND: Diabetes is a multifactorial and growing disease, one of the severe complications of which is diabetic nephropathy (DN), which is the most common cause of chronic renal failure. FERM domain containing 3 (FRMD3) is responsible for maintaining the shape and integrity of nephron cells, and bone morphogenetic protein 7 (BMP7) helps maintain function and reduce kidney damage. This study aimed to evaluate the effect of crocin and losartan on biochemical parameters and the expression of FRMD3 and BMP7 genes in streptozotocin (STZ)-induced diabetic rats. METHODS: Forty male Wistar rats were randomly divided into five experimental groups as healthy, diabetic control (D), crocin, losartan, and diabetic rats treated with losartan-crocin (n = 8). A single dose of STZ (50 mg/kg intraperitoneally injection) was used to induce diabetes. Four weeks after induction of diabetes, rats received crocin (50 mg/kg) and losartan (25 mg/kg) daily for four weeks orally. Rats were sacrificed at the end of the intervention, and blood samples were taken to determine serum levels of glucose, urea, creatinine (Cr), malondialdehyde (MDA), and thiol. Real-time polymerase chain reaction (PCR) was used to assess the expression of the FRMD3 and BMP7 genes in the kidney samples. RESULTS: Diabetes induction increased serum levels of glucose, Cr, urea, MDA, and thiol, but decreased BMP7 and FRMD3 genes expression. Treatment with crocin and losartan decreased these biochemical parameters and increased the expression of the BMP7 and FRMD3 genes. DISCUSSION: Crocin may be a promising therapeutic agent for preventing and improving diabetes-related kidney disease due to its antidiabetic and antioxidant properties.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Masculino , Animais , Losartan , Ratos Wistar , Diabetes Mellitus Experimental/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Estreptozocina/efeitos adversos , Glucose/efeitos adversos , Compostos de Sulfidrila , Estresse Oxidativo
9.
Int J Pharm ; 636: 122826, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918117

RESUMO

Commonly utilized techniques for healing alveolar bone destruction such as the use of growth factors, suffering from short half-life, application difficulties, and the ability to achieve bioactivity only in the presence of high doses of growth factor. The sustained release of growth factors through a scaffold-based delivery system offers a promising and innovative tool in dentistry. Furthermore, it is suggested to guide the host response by using antimicrobials together with growth factors to prevent recovery and achieve ideal regeneration. Herein, the aim was to prepare and an in vitro - in vivo evaluation of bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles, and their loading into the alginate-chitosan polyelectrolyte complex film or alloplastic graft to accelerate hard tissue regeneration. PLGA nanoparticles containing CDP and BMP-7, separately or together, were prepared using the double emulsion solvent evaporation technique. Through in vitro assays, it was revealed that spherical particles were homogeneously distributed in the combination formulations, and sustained release could be achieved for >12 weeks with all formulations. Also, results from the micro-CT and histopathological analyses indicated that CDP and BMP-7 loaded nanoparticle-film formulations were more effective in treatment than the nanoparticle loaded grafts.


Assuntos
Proteína Morfogenética Óssea 7 , Regeneração Óssea , Nanopartículas , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 7/farmacologia , Preparações de Ação Retardada/farmacologia , Osteogênese , Tecidos Suporte , Antibacterianos , Transplante Ósseo/métodos
10.
Neurol Res ; 45(5): 440-448, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36542543

RESUMO

OBJECTIVES: Spinal cord injury (SCI) is caused by external direct or indirect factors with high disability rate, which may even endanger the life of patients. To explore the role of bone morphogenetic protein 7 (BMP-7) in the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into neurons in vitro. METHODS: BMSCs were isolated and cultured by whole bone marrow adherence method. Adipogenic induction and osteogenic differentiation were used to test the multi⁃directional differentiation ability of BMSCs. RESULTS: After 28 days of adipogenic induction, BMSCs showed lipid droplets in the cytoplasm. After osteogenic induction, there were opaque lumps of mineral nodules in BMSCs. There were also orange-red or red mineral nodules in the extracellular matrix. The BMSCs in the 75 ng/ml BMP-7 group were morphologically similar to the neurons. After induction with BMP-7 for 2 h, the NF200 mRNA expression was higher, mRNA expression levels of SYN1, MAP2 and GFAP were higher. Positive rate of immunofluorescence staining in the BMP-7 group was notably increased. The positive rate of NSE immunofluorescence staining in the BMP-7 group was higher. CONCLUSION: BMP-7 can induce rat BMSCs to differentiate into neurons in vitro.


Assuntos
Proteína Morfogenética Óssea 7 , Células-Tronco Mesenquimais , Ratos , Animais , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Osteogênese/genética , Células Cultivadas , Células da Medula Óssea/metabolismo , Diferenciação Celular , Neurônios , RNA Mensageiro/metabolismo
11.
Tissue Eng Part A ; 29(7-8): 200-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565024

RESUMO

Periodontitis is an oral disease caused by bacterial infection that has stages according to the severity of tissue destruction. The advanced stage of periodontitis presents irreversible destruction of soft and hard tissues, which finally results in loss of teeth. When conventional treatment modalities show limited results, tissue regeneration therapy is required in patients with advanced periodontitis. In the present study, we aimed to evaluate the effect of bone marrow-derived mesenchymal stem cells (BM-MSCs) delivering bone morphogenetic protein 7 (BMP7) on tissue regeneration in a periodontitis model. BMP7 is a member of the BMP family that shows bone-forming ability; however, BMPs rapid clearing and degradation and unproven efficacy make it difficult to apply it in clinical dentistry. To overcome this, we established BMP7-expressing engineered BM-MSCs (BMP7-eBMSCs) that showed superior osteogenic differentiation potential when subcutaneously transplanted with a biphasic calcium phosphate scaffold into immunocompromised mice. Furthermore, the efficacy of BMP7-eBMSC transplantation for periodontal tissue regeneration was evaluated in a rat ligature-induced periodontitis model. Upon measuring two-dimensional and three-dimensional amounts of regenerated alveolar bone using microcomputed tomography, the amounts were found to be significantly higher in the BMP7-eBMSC transplantation group than in the eBMSC transplantation group. Most importantly, fibrous periodontal ligament (PDL) tissue regeneration was also achieved upon BMP7-eBMSC transplantation, which was evaluated by calculating the modified relative connective tissue attachment. The amount of connective tissue attachment in the BMP7-eBMSC transplantation group was significantly higher than that in the ligature-induced periodontitis group, although the increase was comparable between the BMP7-eBMSC and human PDL stem cell transplantation groups. Taken together, our results suggested that sustainable release of BMP7 induces periodontal tissue regeneration and that transplantation of BMP7-eBMSCs is a feasible treatment option for periodontal regeneration. Impact Statement Periodontitis is the second most common human dental disease affecting chronic systemic diseases. Despite the tremendous efforts trying to cure the damaged periodontal tissues using tissue engineering technologies, a definitive regenerative method has not been in consensus. Researchers are seeking more feasible and abundant source of mesenchymal stem cells (MSCs), and furthermore, how to use reliable growth factors under more efficient control are the issues to be solved. In this study, we aimed to evaluate the effect of bone morphogenetic protein 7 (BMP7) gene delivering bone marrow-derived MSCs on periodontal tissue regeneration to evaluate the efficacy of BMP7 and engineered BMSCs for periodontal tissue regeneration.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Periodontite , Humanos , Ratos , Camundongos , Animais , Osteogênese , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/metabolismo , Microtomografia por Raio-X , Transplante de Células-Tronco Mesenquimais/métodos , Periodontite/terapia , Periodontite/metabolismo , Ligamento Periodontal , Diferenciação Celular
12.
J Appl Oral Sci ; 30: e20220086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36102412

RESUMO

BACKGROUND: Bioactive molecules present the potential to be used along with biomaterials in vital pulp therapy and regenerative endodontic treatment. OBJECTIVE: The aim of this study was to assess the effects of the combined use of bone morphogenetic protein-7 (BMP-7) and mineral trioxide aggregate (MTA) on the proliferation, migration, and differentiation of human dental pulp stem cells (DPSCs). METHODOLOGY: For the proliferation analysis, DPSCs were incubated with a growth medium and treated with MTA and/or BMP-7 at different concentrations. For the following analyses, DPSCs were incubated with a differentiation medium and treated with MTA and/or BMP-7. Moreover, there were groups in which DPSCs were incubated with the growth medium (control), the differentiation medium, or DMEM/F12 containing fetal bovine serum, and not treated with MTA or BMP-7. Cell proliferation was analyzed using the WST-1 assay. The odontogenic/osteogenic differentiation was evaluated by immunocytochemistry, alkaline phosphatase (ALP) activity assay, alizarin red staining, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell migration was evaluated using a wound-healing assay. Data were analyzed using analysis of variance and Tukey test (p=0.05). RESULTS: The use of BMP-7 with MTA presented no significant effect on cell proliferation in comparison with the treatment with MTA alone (p>0.05), but showed higher ALP activity, increased mineralization, and higher expression of DMP1 and DSPP when compared with other groups (p<0.05). Nestin expression was higher in the control group than in groups treated with MTA and/or BMP-7 (p<0.05). The cell migration rate increased after treatment with MTA when compared with other groups in all periods of time (p<0.05). At 72 hours, the wound area was smaller in groups treated with MTA and/or BMP-7 than in the control group (p<0.05). CONCLUSION: The use of BMP-7 with MTA increased odontogenic/osteogenic differentiation without adversely affecting proliferation and migration of DPSCs. The use of BMP-7 with MTA may improve treatment outcomes by increasing repair and regeneration capacity of DPSCs.


Assuntos
Proteína Morfogenética Óssea 7 , Polpa Dentária , Humanos , Compostos de Alumínio , Proteína Morfogenética Óssea 7/farmacologia , Compostos de Cálcio , Proliferação de Células , Combinação de Medicamentos , Osteogênese , Óxidos , Silicatos , Células-Tronco
13.
Int J Oral Sci ; 14(1): 38, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858911

RESUMO

Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration.


Assuntos
Proteína Morfogenética Óssea 7 , Polpa Dentária , Animais , Proteína Morfogenética Óssea 7/farmacologia , Diferenciação Celular , Células Cultivadas , Colágeno/farmacologia , Cães , Células Endoteliais , Gelatina , Humanos , Metacrilatos , Camundongos , Regeneração , Células-Tronco
14.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805943

RESUMO

This study aimed to induce bone-like tissue from immature muscular tissue (IMT) in vitro using commercially available recombinant human bone morphogenetic protein (rhBMP)-2, rhBMP-4, and rhBMP-7, and then implanting this tissue into a calvarial defect in rats to assess healing. IMTs were extracted from 20-day-old Sprague-Dawley (SD) fetal rats, placed on expanded polytetrafluoroethylene (ePTFE) with 10 ng/µL each of rhBMP-2, BMP-4, and BMP-7, and cultured for two weeks. The specimens were implanted into calvarial defects in 3-week-old SD rats for up to three weeks. Relatively strong radiopacity was observed on micro-CT two weeks after culture, and bone-like tissue, comprising osteoblastic cells and osteoids, was partially observed by H&E staining. Calcium, phosphorus, and oxygen were detected in the extracellular matrix using an electron probe micro analyzer, and X-ray diffraction patterns and Fourier transform infrared spectroscopy spectra of the specimen were found to have typical apatite crystal peaks and spectra, respectively. Furthermore, partial strong radiopacity and ossification were confirmed one week after implantation, and a dominant novel bone was observed after two weeks in the defect site. Thus, rhBMP-2, BMP-4, and BMP-7 differentiated IMT into bone-like tissue in vitro, and this induced bone-like tissue has ossification potential and promotes the healing of calvarial defects. Our results suggest that IMT is an effective tissue source for bone tissue engineering.


Assuntos
Proteína Morfogenética Óssea 7 , Engenharia Tecidual , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Regeneração Óssea , Osteogênese , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Crânio/diagnóstico por imagem , Fator de Crescimento Transformador beta/farmacologia
15.
Invest Ophthalmol Vis Sci ; 63(6): 7, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671049

RESUMO

Purpose: We investigated a role of bone morphogenic protein 7 (BMP7), a member of the TGF-ß superfamily on pathogenic mechanism of Graves' orbitopathy (GO). The therapeutic effects of BMP7 on inflammation and fibrosis were evaluated in cultured Graves' orbital fibroblasts. Methods: Expression of BMP7 was compared in cultured orbital tissue explants from GO (n = 12) and normal control (n = 12) subjects using real-time PCR. Orbital fibroblasts were cultured from orbital connective tissues obtained from GO (n = 3) and normal control patients (n = 3). Cells were pretreated with recombinant human BMP7 (rhBMP7) before stimulation with TGF-ß, IL-1ß, and TNF-α. Fibrosis-related proteins and inflammatory cytokines were analyzed by Western blotting. The activation of signaling molecules in inflammation and fibrosis was also analyzed. Results: The expressions of BMP7 mRNA were lower in GO orbital tissues than control. Fibrosis-related proteins, fibronectin, collagen 1α, and α-SMA induced by TGF-ß were suppressed by treating rhBMP7, and rhBMP7 upregulated TGF-ß induced SMAD1/5/8 protein expression, whereas downregulated SMAD2/3. Increased pro-inflammatory molecules, IL-6, IL-8, and intercellular adhesion molecule-1 (ICAM-1) by IL-1ß or TNF-α were blocked by rhBMP7 treatment, and the expression of phosphorylated NFκB and Akt was suppressed by rhBMP7 treatment. Conclusions: BMP7 transcript levels were downregulated in Graves' orbital tissues. Exogenous BMP7 treatment showed inhibitory effects on the production of profibrotic proteins and proinflammatory cytokines in orbital fibroblasts. Our results provide a molecular basis of BMP7 as a new potential therapeutic agent through the opposing mechanism of profibrotic TGF-ß/SMAD signaling and proinflammatory cytokine production.


Assuntos
Oftalmopatia de Graves , Proteína Morfogenética Óssea 7/farmacologia , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrose , Oftalmopatia de Graves/metabolismo , Humanos , Inflamação/metabolismo , Órbita/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Biomed Pharmacother ; 149: 112910, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35616049

RESUMO

Aortic stenosis (AS) exposes the left ventricle (LV) to pressure overload leading to detrimental LV remodeling and heart failure. In animal models of cardiac injury or hemodynamic stress, bone morphogenetic protein-7 (BMP7) protects LV against remodeling by counteracting TGF-ß effects. BMP receptor 1A (BMPR1A) might mediate BMP7 antifibrotic effects. Herein we evaluated BMP7-based peptides, THR123 and THR184, agonists of BMPR1A, as cardioprotective drugs in a pressure overload model. We studied patients with AS, mice subjected to four-week transverse aortic constriction (TAC) and TAC release (de-TAC). The LV of AS patients and TAC mice featured Bmpr1a downregulation. Also, pSMAD1/5/(8)9 was reduced in TAC mice. Pre-emptive treatment of mice with THR123 and THR184, during the four-week TAC period, normalized pSMAD1/5/(8)9 levels in the LV, attenuated overexpression of remodeling-related genes (Col 1α1, ß-MHC, BNP), palliated structural damage (hypertrophy and fibrosis) and alleviated LV dysfunction (systolic and diastolic). THR184 administration, starting fifteen days after TAC, halted the ongoing remodeling and partially reversed LV dysfunction. The reverse remodeling after pressure overload release was facilitated by THR184. Both peptides diminished the TGF-ß1-induced hypertrophic gene program in cardiomyocytes, collagen transcriptional activation in fibroblasts, and differentiation of cardiac fibroblasts to myofibroblasts. Molecular docking suggests that both peptides bind with similar binding energies to the BMP7 binding domain at the BMPR1A. The present study results provide a preclinical proof-of-concept of potential therapeutic benefits of BMP7-based small peptides, which function as agonists of BMPR1A, against the pathological LV remodeling in the context of aortic stenosis.


Assuntos
Estenose da Valva Aórtica , Ventrículos do Coração , Animais , Estenose da Valva Aórtica/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Modelos Animais de Doenças , Fibrose , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Miócitos Cardíacos , Remodelação Ventricular
17.
Sci Rep ; 12(1): 5264, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347219

RESUMO

The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.


Assuntos
Proteína Morfogenética Óssea 7 , Osseointegração , Ligas , Animais , Proteína Morfogenética Óssea 7/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Diamante/química , Matriz Extracelular , Coelhos , Titânio
18.
PLoS One ; 17(2): e0263430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139106

RESUMO

BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype.


Assuntos
Proteína Morfogenética Óssea 7/fisiologia , Condrócitos/metabolismo , Proteínas de Homeodomínio/fisiologia , Biossíntese de Proteínas/genética , RNA Ribossômico/metabolismo , Fatores de Transcrição/fisiologia , Proteína Morfogenética Óssea 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Pediatr Res ; 92(3): 721-728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34837068

RESUMO

BACKGROUND: Endothelial-to-mesenchymal-transition (EndMT) plays a major role in cardiac fibrosis, including endocardial fibroelastosis but the stimuli are still unknown. We developed an endothelial cell (EC) culture and a whole heart model to test whether mechanical strain triggers TGF-ß-mediated EndMT. METHODS: Isolated ECs were exposed to 10% uniaxial static stretch for 8 h (stretch) and TGF-ß-mediated EndMT was determined using the TGF-ß-inhibitor SB431542 (stretch + TGF-ß-inhibitor), BMP-7 (stretch + BMP-7) or losartan (stretch + losartan), and isolated mature and immature rats were exposed to stretch through a weight on the apex of the left ventricle. Immunohistochemical staining for double-staining with endothelial markers (VE-cadherin, PECAM1) and mesenchymal markers (αSMA) or transcription factors (SLUG/SNAIL) positive nuclei was indicative of EndMT. RESULTS: Stretch-induced EndMT in ECs expressed as double-stained ECs/total ECs (cells: 46 ± 13%; heart: 15.9 ± 2%) compared to controls (cells: 7 ± 2%; heart: 3.1 ± 0.1; p < 0.05), but only immature hearts showed endocardial EndMT. Inhibition of TGF-ß decreased the number of double-stained cells significantly, comparable to controls (cells/heart: control: 7 ± 2%/3.1 ± 0.1%, stretch: 46 ± 13%/15 ± 2%, stretch + BMP-7: 7 ± 2%/2.9 ± 0.1%, stretch + TGF-ß-inhibitor (heart only): 5.2 ± 1.3%, stretch + losartan (heart only): 0.89 ± 0.1%; p < 0.001 versus stretch). CONCLUSIONS: Endocardial EndMT is an age-dependent consequence of increased strain triggered by TGF- ß activation. Local inhibition through either rebalancing TGF-ß/BMP or with losartan was effective to block EndMT. IMPACT: Mechanical strain imposed on the immature LV induces endocardial fibroelastosis (EFE) formation through TGF-ß-mediated activation of endothelial-to-mesenchymal transition (EndMT) in endocardial endothelial cells but has no effect in mature hearts. Local inhibition through either rebalancing the TGF-ß/BMP pathway or with losartan blocks EndMT. Inhibition of endocardial EndMT with clinically applicable treatments may lead to a better outcome for congenital heart defects associated with EFE.


Assuntos
Fibroelastose Endocárdica , Endocárdio , Animais , Proteína Morfogenética Óssea 7/metabolismo , Proteína Morfogenética Óssea 7/farmacologia , Fibroelastose Endocárdica/metabolismo , Endocárdio/metabolismo , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Losartan/farmacologia , Ratos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-939857

RESUMO

Pulp loss is accompanied by the functional impairment of defense, sensory, and nutrition supply. The approach based on endogenous stem cells is a potential strategy for pulp regeneration. However, endogenous stem cell sources, exogenous regenerative signals, and neovascularization are major difficulties for pulp regeneration based on endogenous stem cells. Therefore, the purpose of our research is to seek an effective cytokines delivery strategy and bioactive materials to reestablish an ideal regenerative microenvironment for pulp regeneration. In in vitro study, we investigated the effects of Wnt3a, transforming growth factor-beta 1, and bone morphogenetic protein 7 (BMP7) on human dental pulp stem cells (h-DPSCs) and human umbilical vein endothelial cells. 2D and 3D culture systems based on collagen gel, matrigel, and gelatin methacryloyl were fabricated to evaluate the morphology and viability of h-DPSCs. In in vivo study, an ectopic nude mouse model and an in situ beagle dog model were established to investigate the possibility of pulp regeneration by implanting collagen gel loading BMP7. We concluded that BMP7 promoted the migration and odontogenic differentiation of h-DPSCs and vessel formation. Collagen gel maintained the cell adhesion, cell spreading, and cell viability of h-DPSCs in 2D or 3D culture. The transplantation of collagen gel loading BMP7 induced vascularized pulp-like tissue regeneration in vivo. The injectable approach based on collagen gel loading BMP7 might exert promising therapeutic application in endogenous pulp regeneration.


Assuntos
Animais , Cães , Humanos , Camundongos , Proteína Morfogenética Óssea 7/farmacologia , Diferenciação Celular , Células Cultivadas , Colágeno/farmacologia , Polpa Dentária , Células Endoteliais , Gelatina , Metacrilatos , Regeneração , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...